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ABSTRACT

In this paper we develop a comprehensive framework for the study

of decentralized estimation problems. This approach imbeds a decen-

tralized estimation problem into an equivalent scattering problem,

and makes use of the superposition principle to relate local and central-

ized estimates. Some decentralized filtering and smoothing algorithms

are obtained for a simple estimation structure consisting of a central

processor and of two local processors. The case when the local

processors exchange some information is considered, as well as the case

when the local state-space models differ from the central one.
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I. Introduction

The study of complex, large-scale systems involves frequently the

solution of decentralized estimation problems. This is the case for

example when one considers some systems which are inherently decentral-

ized, such as power systems [1], or when communications between sub-

systems are limited or unreliable, as in military command and control

systems [2]. Also, in m applications, the volume of information to

be processed is so large that a decentralized or parallel processing

structure is required. Such structures have been proposed for example in

image processing (if the strip Kalman filter discussed by Woods and

Radewan [3]) or in order to estimate the location of moving sources in a

distributed sensor network [4].

An additional incentive to consider decentralized estimation struc-

tures is the recent progress in VLSI (very large scale integration)

technology which makes it now feasible to implement estimation algorithms

in a parallel fashion 15]. However, in spite of these potential applica-

tions, it is only recently that decentralized estimation problems have

been the object of some attention. This is due in part to the complexity

of these problems: to describe entirely a decentralized estimation struc-

ture consisting of interconnected local processors one needs to specify

for each processor a local model, a set of measurements and a local

objective function (see Barta [6] for a general formulation of decentral-

ized estimation problems). In addition, one needs to describe the

topology and the capacity of the counications network connecting all
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processors. These various elements aim at capturing the fact that in

a decentralized estimation structure, each processor by itself has only

a limited knowledge of the physical process uder study, so that to

overcom this Limitation, the local processors must communicate. Also,

even if all processors cooperate, their objectives may not be the same.

Another important feature of decentralized estimation structures is

that they provide usually more than one way to solve a given problem.

This explains why several approaches have been proposed to study decen-

tralized estimation problems. Barta [6] has used a gae-rheoretic ap-

proach that allows for a large amount of flexbility in the choice of

infozation flows between local processors. By contrast, Sanders et.al.

[7] and Tacker and Sanders [8] have considered decentralized estimation

filters with a fixed structure. Another approach, which was followed by

Speyer [9], Chong [10] and Willsky et.al. [11] is based on decomposing a

central estimation problem into emaller, local ones. This approach will

be at the center of our discussion here.

The objective of this paper is to propose a more systematic framework

for the study of decentralized estimation problems. To do so, we will use

the scattering framework for linear estimation introduced by Kailath and

his coworkers [12]-[15]. In this context, to every local or centralized

linear estimation problem, we can associate an equivalent scattering problem

which is specified by the knowledge of some scattering parameters and of a

set of internal sources for the scattering medium. Then, if the scattering
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parameters describing the various local or central estimation problems

can be transformed so that they give rise to the same media, we can use

the superposition principle for linear scattering media to relate the

local and central estimates. This technique will be used here to obtain

several decentralized estimation algorithms. To illustrate these results

we will also consider several random fields problems of the type

discussed in [11].

This paper is organized as follows. In Section II the scattering

framework for linear estimation problems is introduced, and in Section III

a brief review of the properties of scattering media is given. Then, in

Section IV we obtain some decentralized smoothing and filtering algorithms

for a simple decentralized structure consisting of a central processor and

of two local processors which do not communicate between each other. When

these local processors are allowed to comuanicate, the results of Section IV

need to be modified as shown in Section V where we consider several problems,

the smoothing update and the real-time smoothing problem, which appear in

this context. The case when the state-space models available to the local

processors differ from the global model is also considered in Section VI.

Finally, in Section VII, we discuss some possible extensions of this work

to networks where delays or noise can appear in the communication

channels between processors.

These constitute only a few of the issues appearing in the context

of decentralized estimation. In a companion paper, the scattering

framework will also be used to obtain some decentralized algorithms for

weakly coupled and singular perturbed systems.
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11. The scattering framework for filtering and smoothing problemns

The scattering framework for the study of linear estimation problems

has been discussed in great detail in L11-[15]0 *we will therefore give

here only a brief presentation of the main aspects of this theory. We

consider the state-space model

x(t) - Mz(t) + Bu (t), O~tCT (2.1)

with observations

Y(t) - OC(t) + VWt (2.2)

where u Ct) and v Ct) are some white noise processes uncorrelated with

the initial conditions x (0), i.ea.

Eli urn0, x(O)- 0 (2.3)

and

[() (u, (S)VIs) (S) Is )(t-S (2.4)

with RnR '>O (the estimation problem is assumed to be nonsingular).

The a priori information on the initial conditions is given by

[z(0)j -X(0), zli(0"' (0)] - P(0) (2.5)

where i(O) - x(0) -x(0). In the following, it will be convenient to

view this information as an additional observation on x (0) given by

a - (0) * (0) +4w (2.6)
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where EMw-O and E[ww'I-p(O). Then, if we introduce the Hilbert

spce

X - II(x(t), o~t<T), X( H(x(O))

U - H(u(t), O~t<T), V - H(v(t), O<t<T)

Y - H (y M), O<t<T)

the space y of observations is included in the space G - x0 OUV u = v xO v

which specifies the total information contained in the system (2.1)- (2.2),

Y C G, (2.7)

but in general this inclusion is strict, so that from the observations

Y one cannot recover comletely x(t) and v(t) for O<t<T.

However, as was observed by Weinert and Desai [161, the information

lost by Y can be entirely recovered by constructing the dual process

z(-) defined by

=~t -A'X(t) + C'R71v(t), X(T)=O
(2.8)

z (t) B BX (t) + u (t)

with the observations

n- P (O)X(O)-w .(2.9)

In this case, if

4 Z - H(nIz(t), O<t<T)

denotes the Hilbert space spanned by the dual process, one can show

the following result.
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Lema: Z is the orthogonal complement of Y in G, i.e.

Ui) Z 1.Y and (ii) Z)YO G;

The proof of Wi) is obtained by direct verification (see also [16]).

To prove (i) one needs only to note that the system

- + (2.10)
40 - (' 0 C'R" v

with observations

(:) (: 0 )(z) (0 " ) (2.11)

is invertible. The inverse system is given by

+ (2.12)
-CIR' C -A$ C'R -  0 a

2) -8) + ) (2.13)v C 0/\ 1 0 z

with the boundary conditions

X(T)=0 x(0) + P(0))A(0) = m+n . (2.14)

The solution of the tm-point boundary value problm (2.12)-(2.14)

enables us to reconstruct entirely G - X0 ® U () V from Y and Z

so that (ii) is satisfied.
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This result can be used to obtain the scattering framework f or the

smoothing arnd filtering problems. By conditioning equations (2.12) and

(2.14) with respect to Y, and by using the fact that Y.LZ, one has

\x(tIT)/ A \ 1C~l -A) x~tIT ) (Coo ly(t)) (2.15)

with X(TIT)u"0 and

x(OjT) + P(0)X(OIT) - m - ;(0) . (2.16)

Here x(tIT) and X(t IT) denote the linear least-squares smoothed

estimates of x(t) and X(t) given m and y(s), 0<s<T. Then, by

discretizing (2.15), one gets

\^(tlT)! \C-Rlc& IWA XtAT) (2.17)

S (t4-A,)

q' (t)A

anid one can view (2.17) as obtained fromi a scattering medium with

infinitesimal scattering matrix S (t+A,t), and interval sources q(t) A

(see Figure 2.1).

_6 7--
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Figure 2.1. Scattering representation of the discretized smoothing
equations.

~(A A A(T

-P(O) S l 
(jt

q(t,o) q(It
X(o/T) XtT

Figure 2.2. The scattering problem associated to the fixed-interval
sothing estimates.
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By composing together these infinitesimal layers, we obtain an

aggregate scattering medium which is described in Figure 2.2 (cf Section

III for a description of the rules of composition of scattering layers).

The incoming waves for this medium are given by the boundary conditions

(2.16), and the solution of the scattering problem requires the com-

putation of the internal variables (x(tlT), X(tjT)). This can be done in

a variety of ways which are discussed in detail in [14], [15]. Among

existing methods, a method which is particularly simple is the

Fraser two-filter formula [17], [18]

-l - -1 - A
P s(t)x(t T) = P (tM 'I(tM + P (t x Bt) (2.18)

where P- (t) P1(t) + P- (t) and where (xF , PF) and denote
s F B XF F X'

respectively the forward and backward linear least-squares filtering

estimates and error covariances of x(t). They satisfy the equations

-1 -l
XF(t) = (A-PFC'R C)xF t) + PFC'R 1 y(t) (2.19)

xF (0) - x(O)

and

-xB(t)= (-A-PBC'R C)X(t) + PBC'R y(t)

.~. 1 (2 .20 )

P 3(T)x B(T) - 0

with
PF - APF + PFA' + BB - F C'RCP , P F(0) = P(O)

(2.21)

-PB - -AP " P A' + B' - P C'R lcP , P (T) 0 0.
B B B B B B
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A4 detailed discussion of this formula can be found in Wall, Willsky

and Sandell [19].

This shows how to compute the smoothed estimate x(tIT). To compute

the filtered estimate x(tlt) - 'IF(t), one needs only to use (2.19). By

discretizing (2.19) and by dropping subscripts, one gets

x(t+A,t+A) - (I+(A-PC'R-)A)x(tjt) + PR-ly(t)a (2.22)

which can be viewed as obtained from a transmission medium with

infinitesimal transmission matrix T(t+A,t)=I + (A-PC'R C)A and

with internal sources PC'R- y(t)A (see Figure 2.3). These infinitesimal

layers generate an aggregate transmission medium with initial x(0), and

the solution of the transmission problem requires the computation of

the internal variables x(tit).

Instead of solving this problem, it is sometimes more convenient to

consider the information form of the Kalman filter, i.e.

d(t) - (-A-P- BB')d(t) + C'R ly(t) (2.23)

A -1 -1
where d(t) P (t)x(t t) and d(O) - P (0)x(0). The transmission problem

associated to this form has the advantage that its infinitesimal sources

are C'R ly(t)A, so that they depend only on the original model instead of

introducing P(t) as well. This property will be exploited in Section IV

to obtain some decentralized filtering algorithms.

'- " , ' .,t ... . '~- - -. - l 
- I"

-
. L' B '



By composing together these infinitesimal layers, we obtain an

aggregate scattering medium which is described in Figure 2.2 (cf Section

III for a description of the rules of composition of scattering layers).

The incoming waves for this medium are given by the boundary conditions

(2.16), and the solution of the scattering problem requires the com-

putation of the internal variables (x(tlT), X(tjT)). This can be done in

a variety of ways which are discussed in detail in [14], [15]. Among

existing methods, a method which is particularly simple is the

Fraser two-filter formula [17], [18]

-l - -1 - A
P s(t)x(t T) = P (tM 'I(tM + P (t x Bt) (2.18)

where P- (t) P1(t) + P- (t) and where (xF , PF) and denote
s F B XF F X'

respectively the forward and backward linear least-squares filtering

estimates and error covariances of x(t). They satisfy the equations

-1 -l
XF(t) = (A-PFC'R C)xF t) + PFC'R 1 y(t) (2.19)

xF (0) - x(O)

and

-xB(t)= (-A-PBC'R C)X(t) + PBC'R y(t)

.~. 1 (2 .20 )

P 3(T)x B(T) - 0

with
PF - APF + PFA' + BB - F C'RCP , P F(0) = P(O)

(2.21)

-PB - -AP " P A' + B' - P C'R lcP , P (T) 0 0.
B B B B B B



A -13-

x(/t I +(A- PC'R-'C)L A

PC' Rt y(t)A

Figure 2.3. The infinitesimnal transmission layers associated
to the filtering problem.
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111. Some facts from scattering theorywafisinrdcdb

Tealgebra of scatterin mtrices was first introduce by

Redheffe 120], (21], and a discussion of the main aspects of this

theory can be found in [12]-[15]. Only a few basic facts from this

theory will be required here.

A scattering medium is specified by a scattering matrix

sM a b) (3.1)
(C d

and by some internal sources

Q (3.2)

(see Figure 3.1). The parameters a and b (which can be operators, or

matrices) are called the transmission coefficients of the medium. They

describe the portion of a wave 1 (resp. r_) travelling from left to

right (resp. from right to left) which is transmitted by the medium.

Similarly, the parameters c and b are called the reflection coefficients

and describe the parts of the waves 1 and r which are reflected. Then,

the outgoing waves are given in function of the incoming waves by

It is assumed here that the scattering medium is linear.
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theory will be required here.

A scattering medium is specified by a scattering matrix

sM a b) (3.1)
(C d

and by some internal sources

Q (3.2)

(see Figure 3.1). The parameters a and b (which can be operators, or

matrices) are called the transmission coefficients of the medium. They

describe the portion of a wave 1 (resp. r_) travelling from left to

right (resp. from right to left) which is transmitted by the medium.

Similarly, the parameters c and b are called the reflection coefficients

and describe the parts of the waves 1 and r which are reflected. Then,

the outgoing waves are given in function of the incoming waves by

It is assumed here that the scattering medium is linear.
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To compose two scattering layers, one needs to introduce a special

product different from the ordinary matrix product which is called the

star product (see [20], [21]). For the scattering layers described in

Figure 3.2, one gets

u( 9 *(: :
S M

A(I-bC)- a B+b(ICb)-D) (3.4)

c+dC (IX:] -1 a d (I-cb) "1D

where the trans ission and reflection coefficients of S can be obtain

by using standard flow graph rules [22]. To compose internal sources,

one needs also to use a special sum called the assembly sum. For the

interna, sources

Q 1 _(= ) and , + .(3.5)

of Figure 3.2, it is denoted as Q-Q1 0 Q2 where

Q(I-bC)(q +bk (3.6)
Q- q d l(C) -1" lk-Cc+)/
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Exmle: If we consider the scattering medium generated by the smoothing

problem of Section II, i.e.

* (t,0) -PitO)) 37

(3.7)
SI - S(tO) - w(t0) Y t0)

q +it,0) YtO

Q1 a q(t,O) - q ) (3.8)

the previous composition rules can be used to obtain a set of dif-

ferential equations for the entries of S(t,0) and q(t,0). Thus, if

/I+AA&-51
S 2 S(t+A't) C i -1 (3.9)S2 SI+,t C c I+A'A/

and

Q2 = q(tlA YW (3.10)

one has

S 2 * S, - S(t+A,0)

-1

where K(t) - P(t,0)C'R and where the time arguments have been omitted.

This shows that

---- 1
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;(to) - (A-CC)# ,

i(t.o) - AP+uP' ='-c'-lcp , P(OO)-O

i(t.o) - Yc'1 1 c$ , W(o,o)-O (3.12)

IY(to0) - (A-=) -, (O,0)-z

so that P (t, 0) is the solution of the Riccati equation associated to

the filtering problm with sero Initial conditions, #(t,0) - Y' (t,0)

is the transition matrix of the corresponding Wmn filter and

W(t,0) - Jf *'(s,0)C't-1 C*(s.O0)ds (3.13)

0

is the associated observability matrix. By comosinq sources, one

gets also

Q1 0 Q 2 q(t+&,0)

* ( q t, )+((A-KC)q (t .)+Ky(t))4& 
(3.14)

_ (t,0)-?C1R" (ylt)-Cq+ (t,O))A

so that

q+ (t,0) - (A-KC)q + + Ky I q+(0,0)-0

_(t,o) -- C''l I(y-Cq+) , q(O,O)-O.

This shows that

q (t,0) - 0(tit) (3.16)
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where x0 (tlt) denotes the Kalman filtering estimate obtained for zero

initial conditions (x(0)-0 and P(0)-0) and

t

q_(t,0) - '(s,0)C'R-lv 0sds (3.17)

0

where v0 t) - Y - Cx 0(tit) is the innovations process for zero

initial conditions.

One drawback of the star product for composing scattering layers is

that this product is nonlinear. This leads for example to some nonlinear

differential equations such as (3.12) for the entries of S(t,0). To

linearize these equations, Redheffer noted in [201 that one needs only

to transform the scattering medium of Figure 3.1 into a transmitting

one. This can be done by expressing the waves (r +,r_) at the right of

the scattering layer in function of the waves (1_,l+). By using flow-

graph inversion rules as shown in Figure 3.3, one obtains

(::) - c bcl 1 + (q+ - bd q_ 3.18)

r_ -d- lc d-1. 1+ -d- 1 q

T R

where T is the transmission matrix of the medium and where R describes

the transmission sources. Then, the rules of composition of trans-

mission layers are the same as those of ordinary matrix multiplication

so that if a medium (T,R) is obtained by composing two layers
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(T. R  i-1,2 one has

T - T2T1 , R-R2 + T2R1  (3.19)

We note however that since scattering problems involve the specification

of incoming waves at the boundaries of the medium, if we transform a

scattering problem into a transmission one, one gets a two-point boundary

value problem. Such problems have been studied by Reid [23], and more

recently by Sidhu and Desai [24] in the context of linear estimation.

In the following, in order to solve scattering problems, we will

make repeated use of the superposition principle. This principle applies

only to linear scattering media. Let S be the scattering matrix of a

ii i

liermedium, and let (r+, 1+) be the outgoing waves of the medium

associated to the incoming waves (l,r-) and internal sources

q+

Qi\q

for ixl,2. Then, the superposition principle states that- the outgoing

waves associated to the incoming waves (l,r) = (1 +1 ,r'+r 2

and the sources Q-Q1+Q2 are given by

r+,l+) Cr + r 2  1 +2( r + i + 1 (3.20)
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IV. The decentralized smoonthing and filtering problems

A simple decentralized estimation problem can be described as

follows: let S i-i,2 be two stations which observe independently

a process

i(t) - Ax(t) + Su(t), OXt4? (4.1)

The measurments obtained by Si i-1,2 are denoted as

Yi W - Cix(t) + v. (t) (4.2)

where v and v2 are some independent white Gaussian noises such that

E4( ) v[(s) ) - ( )t-s (4.3)v 2 W() R2)

Then, if we assume that S1 and S2  are linked to a central processor P,

and if we want to compute the smoothed or filtered estimate of x(t)

given yl (-) and y2 (-), two strategies are possible:

(i) S and S2  send their measurements to the central processor

which computes x, the estimate of x given y (-) and y 2 (-).

(ii) Si 1-i,2 processes its own information locally and computes
W ^ M
( (the estimate of x given yi(.)). Then x i-1,2,

is sent to the central processor which in turn seeks to com-

A(1) ' 2bine x and x to obtain the centralized estimate x.

The first of these strategies is centralized and any of the existing

smoothing and filtering algorithms can be used to compute x. The second

one is decentralized and will be the object of our discussion here.

A,,, , r7
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A. Decentralized smoothing

In the following, we will write as Y. = H(m;y (s), O<s<T) the

Hilbert space spanned by the observations available to S. and we will

denote by

x(tjT) - E[x t) IY ,Y 2 (4.4)

and

x (tIT) = E[X(t)jY.] i-1,2 (4.5)

the centralized and local smoothed estimates of x(t).

Then, by using the scattering framework of Section II, the estimates

X(tIT) and x (tIT) can be obtain by composing some global and local

scattering layers such as those depicted in Figure 4.la and 4.lb. One

important feature of these elementary scattering layers is that they

correspond to nearly identical media. The only difference is that for

the global medium, the reflection matrix associated to the left incoming

wave x^tlT) is (C 4C2R A and that for the local medium, the

reflection matrix for (i) (tiT) is Cj.1lCl1 A.

This means that we cannot apply directly the superposition

principle to these scattering layers. However, a very simple transfor-

mation can be used to make the local medium identical to the global one:

one needs only to replace the local reflection matrix for ( (tjT) by

(C1RR1C +C R 1 C2)A and compensate for the additional reflected wave
cwav

CIR21C2x(1) (tT)A by a fictitious source equal to -CR2C 2 x (t)

as shown in Figure 4.lc.
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X^ (t ) so (tA T)

Figure 4.1a. Global scattering layers.

(1)

Figure 4.1b. Local scattering layers for i-1.
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Axt (tIT) 6 tAT

(t T).* - (t+AIT)

Figure 4.1c. Modification of the local scattering layers.

I+A(t,)tA

6(t) IAA6tA

Figure 4.2a. Scattering layers obtained by superposition.
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By symmetry, we can also transform the layers associated to

x (tIT). Then, by superposition, we see in Figure 4.2a that the

internal variables

S- (tIT) -X (tIT)(4.6)

6(t) - X(tT) - X(1)(tIT) -X (2)(tIT)

can be obtained by composing the global scattering layers with

internal sources

0
+ A (4.7)

(R1Cx~l (tIT) + ~ 1 Cx 2 (t IT)/

where q(t)A is obtained by superposing the sources of the global

layers with the ones obtained in Figure 4. lc for the local layers. The

boundary conditions for this scattering problem are also obtained by

superposition and are given by

(o) = -x(0) - P(o) 6(0)
(4.8)

(T) = 0

They are described in Figure 4. 2b where we have represented the

aggregate scattering mediun associated to (t) and 6(t).

To solve the scattering problem satisfied by &(t), we can use

any of the global smoothing algorithms with the observations

(yl(t), Y2 (t)) replaced by - (Clx(2) (tIT), C2x() (tIlT)) and with

initial conditions (-x(0), P(O)). The two-filter solution of this

problem is

r
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SPO)-(t,o) S(T~t)

1 8(o) 8(t)

Pigqe 4.2b. Aggregate medium obtained by superposition.
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, S(t,o ) S(T, t)
I- P (° )  J q(t,o) q(T~t)

8(o) 8(t)

Fique 4.2b. Aggregate medium obtained by superposition.
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i

S- F t t) P (t) tP(t) + P3 (t) iB(t)(49

where

F(t) - (A-P F(CIR, C 1 CR C2))L;(t)

-PP,(CjR1 Clx (tIT)+C . '(2 7'lC, x (tjT)) (.0

yo) - -X(o)

and

()- (-A-Ps (Ci'R1
1Cl+C?;C)F.t

-P (CR71 C (2) (tT+'~ ()(t 1 T))
1 1 x C tIT 'C2C 2x (4.11)

P3 1 (T) IB(T) -0

and where P., P. and P. denote respectively the global smoothing and

forward and backward filtering error covariances. They are given by

Ps (t P-"(t) + P (lct) (4.12)

with

P(t) -AP +P A'+BB'-P (C' C1 -1' C4.13
F F F F 11 1 2C2 C2 F (13
P F(0) - P(0)

and

-p (t) - -a -P A'+Bs'-P (CRC, P. (4.14)

-1
PB (T) 0.
B

Since the equations (4.9)-(4.11) for t(t) depend only on the local

smoothed estimates x (t T) and x(2) (t T), and not on the measuremnts

Yl ( ") and y2 ), they can be used by the central processor to compute the

centralized estimate

.(tIT) , '(t) + +.t,,2. ..
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This algorithm was first derived by purely algebraic methods in

(11]. one interesting application of this result is for the map

combining problem in the study of random fields. In such a problem, we

consider a random field (gravitational, magnetic, or else) which is

modeled by the process x(t) considered above, and we are given two maps

x~ i (tIT) i=i,2 obtained after two different surveys of this field.

Then, one wants to combine these maps to obtain a global map x(tiT).

This can be done by using the previous algorithm (see [11] for more

details).

B. Decentralized filtering

To obtain some similar formulas for the filtering estimates x(tjt),

x ( I ) (tt) and x (2 (tjt), we need to apply the superposition principle to

the transmission layers associated to the filtering problem in information

filter form. Let P(t) and P W(t) i=i,2 be the solution of the Riccati

equations

AP+PA'BB'-P(C RCl+CR2 C2 p (.5

and

(i AP i)+P i)A'+BB'- ~PiC!R7c.p(i) (4.16)

with P W (0) - P(0) i=,2. Then if

d(t) M tx(t) and d t) = P x t) (4.17)

denote the global and local filtered estimates of x(t) in information

form, the transmission layers associated to d and d(i) are
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described in Figures 4. 3a and b. These media are not the same, but

by adding and subtracting to the local transmission matrices, we can

modify the local layers as shown in Figure 4. 3c, so that the trans-I mission media are now identical. By superposition, we find in Figure

4.4 that

1 () -d t) d(1) () d(2) M(.8

satisfies a transmission problem with the same sedium as the global

filtering problem and with sources

Thus, 1(t) is given by

1(t) - (A'+P-l BB ) 1tM (4.20)

+(1()-i-1 -lB' (1)+( (2)-l p-l Bd(2

with initial conditions

1(0) - -d(0) = -P 1 (0)X(0) .(4.21)

If instead of computing 1(t), we want to compute

r~t) -P~t~lt) - - (l-1A(l) (2)-l-(2) (.2
r~t) - P~t~l~t) -X(t) -P(t)(P x +P x(.2

we find that

-1 -1r(t) - (A-P(CIR C 1 C'R 2C 2))r(t) (.3

M l-1 (l-LA(l) (2t)l(P2

+ P LBI t)(P IB'
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r~t) -P~t~lt) - - (l-1A(l) (2)-l-(2) (.2
r~t) - P~t~l~t) -X(t) -P(t)(P x +P x(.2

we find that

-1 -1r(t) - (A-P(CIR C 1 C'R 2C 2))r(t) (.3

M l-1 (l-LA(l) (2t)l(P2

+ P LBI t)(P IB'
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Figure 4.4,. Transi.ssion layers obtained by superposition.

Central Processor

Computation of r

KalAn fitrfr1) \aim fitrAo (2)

Figure 4.5. Centralized implementation of the decentralized
filterinq alqoriti".



-32-

Figure 4.4,. Transi.ssion layers obtained by superposition.

Central Processor

Computation of r

KalAn fitrfr1) \aim fitrAo (2)

Figure 4.5. Centralized implementation of the decentralized
filterinq alqoriti".



-33-

II
with r(0) --x(0), an algorithm which is the same as the one obtained

algebraically by Speyer [9] and Willsky et.al. [11).

Implementation

The previous decentralized filtering algorithm can be implemented

in two ways, depending on whether l(t) or r(t) are computed in a

centralized or decentralized way, as shown in Figures 4.5 and 4.6

(see also Chong [10]).

In the centralized method, r(t) is computed by the central pro-

cessor, and in the decentralized method the local processor S. computes

ri(t) = (A-P(C'RI CI+C'R21C2 ))r ( (t) (4.24)

(M)-li MBP i -1^ Wi
+ (PP (i)-lx W

with i=,2. The initial conditions can be chosen such that

r(1) (0) = -x(O), r(2 (0) - 0 • (4.25)

Then, by linearity, one gets

r(t) - r(1) (t) + r (2) t) (4.26)
"C) (i)

so that if each local processor transmits xi,r ), the central

estimate x is obtained by a static linear combination of the x 's and
i),

r 's, i.e.

a r( +r (2) ()-l"(l) +(2)-I-(2)
-+ x )(4.27)

Simi
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Figure 4.6. Decentralized implementation of the decentralized
filtering algorith~m.
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The advantage of such a procedure is that if the communications between

the local processor and the central one are restricted; and if the
A

central processor needs to compute x only from time to time, then the

local processors can send (x(i) ,ri) at these times instead of sending
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The advantage of such a procedure is that if the communications between

the local processor and the central one are restricted; and if the

central processor needs to compute x only from time to time, then the

local processors can send (x(i) ,ri) at these times instead of sending

x continuously. However, a disadvantage of this method is that it

assumes that each local processor knows completely the global model, i.e.

C. and R. for j#i.) )

V. The smoothing update and real-time smoothing problems

In some cases, instead of being given the local smoothed estimates

x (tIT) i-1,2 to compute x(tjT), one is given a first estimate

x( tT) and some additional measurements y2 (t), O<t<T. Then, instead

of reprocessing all the data (y1 (.),y 2 (.)) to compute x(tIT), one is

interested in updating the first estimate x(I ) (tIT) to incorporate the new

measurements y2 (-). This problem will be called in the following the

smoothing update problem. It arises for example in the analysis of random

fields [111, when one wants to update an old map to incorporate the results

of new surveys.

A variant of this problem that will also be discussed in the following

is the real-time smoothing problem. In this case, if

Y1 M H(m;y I(s), O<s<T)

ty 2 H(m;y 2(s), O<s<t), O<t<TY2 2 -- ' ---
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denote the Hilbert spaces spanned by all the observations y ") and

by the observations y2C.) up to time t, one wants to compute

RS (t) - EIX(t) yloy 2
(5.1)

in terms of x1) (tIT) and y2

A. The smoothing update problem

By superposing the global and local scattering layers obtained

for the decentralized smoothing problem, and by denoting

n(t) - i(tLT) - '(l) (tfT) (5.2)

8(t) - X(tIT) - X '1(tIT) (5.3)

we obtain the scattering layers described in Figure 5.1. This shows

that the variables n(t) and 8(t) can be obtained by composing the

global scattering layers with internal sources

0
- (-C;R1l C C ) (tIT)) (5.4)

The boundary conditions for this scattering problem can also be

obtain by superposition, and they are given by

() -P(0)e(0), 8(T)-0 . (5.5)

To solve this scattering problem, we can use again the two-filter

formula. We obtain

P1 (t)nl (t) P- I (t)nt) + P 1Ct) (t) (5.6)
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n (t) TTI r (t+A)

Figure__5.1. Scattering layers associated to the smoothing
update problem.

x RS (t)

S()(T,t)
S(t,O)

r P(O) q(t,O) q () (T,t)

RSM

Figure 5.2a. Scattering medium for the real-time
smoothing problem.
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where

, P~~~c 1 -1 €1c'rIr.(t) -(A-P (cC +CR C)T tF 11 1C. 22)2 F (5.7)

+ 2 R2 (y 2 (t)-C2 x ( tgT))

Ti7 (0) -0

and

_%(t) - (-A-_P (CR lCl+C'R lC2))V (5.8)

+ P C c -1 -1) lT )B R2 (y2(t)-C 2x (I)

P-1 ()TB()-

and where PS, PF and PB are given by (4.12)-(4.14).

B. The real-time smoothing problem

The aggregate scattering medium associated to the real-time

smoothing problem is given by Figure 5.2a where the scattering matrix

S(tO) and the sources q(t,O) are generated by the global scattering

layers described in Figure 4.la and where the medium S (Tt) and the

sources q (T,t) are generated by the local layers of Figure 4.1b.

Similarly, the local scattering medium associated to x (1) (tIT)

is given by Figure 5.2b, where the right layer is the same as for

x Rst). The medium of the left layer can be made the same as for

xRS (t) if we use the modification of the local layers described in

Figure 4.1c. By doing so, we find that
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Figure 5.2c. Scattering problem obtained by superposition.

=,A4
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and

P- (t) =P- (t) + P M 1(t) (5.15)
RS F B

From (5.13) one get r)B () O, so that (5.12) reduces to

xR(tMI)+PRS PF 1 )F ()(5.16)

A similar problem to those discussed here appears when one

considers a decentralized filtering structure where instead of assuing
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) = A u22 )Q) (B2)" 
(6.4)

A B

and

Y= H1  0 + v
1  (6.5a)

Cl

Y2 = (C2 C'2 2  ) + v 2  ( 6.5b)

C2

With this model structure, the smoothed estimates x(tIT) and

^ I)(tIT) can be obtained by composing the global and local scattering

layers described in Figures 6.1a and 6.1b. In Figure 6.1a, it is

assumed that the matrices A,B,C 1 and C2  have the same block structure

as in (6.4)-(6.5). The main feature of the local scattering layers is

that the internal variables i) (tIT) and x 1(1)(tIT) are of smaller

dimension than the variables

/ 1 (t T) 1x (tjT)
X(tIT) =(tIT) (6.6)( lT S^ (tT)) , a t1 \ (lt I)

associated to the global scattering problem. However, by adding some

appropriate internal sources, the local scattering layers can be

imbedded in the global ones as shown in Figure 6.1c and the internal

variables

• i ....
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simplified models which describe only the evolution of a set of

local variables (machine angles and frequencies). This motivates us

in this section to consider the case when the global model is given by

(4.1) and (4.2) and when the local models and measurements are given

by
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(-A 21x (tlT)+B 21BX 1 (tITn)

(tj1) (tAIT)

0_ _ _ oil~ (t+AT0

C(C

ii 1 1 k1 21 2

Figure~~~~ 
(.l) Im edin f elo a lyes
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A: 21 Ax 22)Q)1 (B 2)" (6.4)
A B

and

Y, (H 0) ( +) v (6. 5a)

Y2 = (C C '22Y )' + v 2 .(6.5b)

C 2

With this model structure, the smoothed estimates x(tIT) and

x I (tAT) can be obtained by composing the global and local scattering

layers described in Figures 6.1a and 6.1b. In Figure 6.1a, it is

assumed that the matrices A,B, B and C 2have the same block structure

as in (6.4)-(6.5). The main feature of the local scattering layers is

that the internal variables x (tIT) and x )(tIT) are of smaller

dimension than the variables

/ 1 (t T) 1x (tjT)

X(tIT) =11 (tIT) 11(6.6)

associated to the global scattering problem. However, by adding some

appropriate internal sources, the local scattering layers can be

imbedded in the global ones as shown in Figure 6.1c and the internal

variables
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have now the same dimension as X (tjT) and X~tIT).

By superposing the global scattering layers of Figure 6.1la and

the imbedded local layers of Figure 6.1ic, we obtain the scattering
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seek below to transform the problem so that 821B -0. When this is

the case, the two-filter solution of the scattering problem is given

P-1 (t) = PrI t) + P- (t) (6.9)

(( )vh(r C) rjo.() T1c

=* /1 APcR'lc~ 6.10)1

+ PFCR2 (y2 (t-C 2 1 x1 (tlT)) + (A2x (tIT

gp, (0)1

n. (0) (,(1 (0)
and

(-A-PB(CiR7'Cl+CIR;lC2  (.1

+ P -1 -(l) (tA 2 xT') tT0

C R2 (y2 (t)-C 21xl (tIT)))

P-1 (T)

C)0
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I
S0 and 0
4a

have now the same dimension as X (tjT) and X(tIT).

By superposing the global scattering layers of Figure 6. la and

the imbedded local layers of Figure 6.1c, we obtain the scattering

layers described in Figure 6.2. This shows that the internal variables

1)" (6.7a)

and

S(t) XtT - X (l) tjT)1 1' (6.7b)

((t)) (X1( I tI /(6Th
satisfy a scattering problem with the same medium as for the global

smoothing problem and with internal sources

0
& B(t) - ()( (6. 8a)

- \A21 1  (tl'm -B21 B1 (tIT

and

i((t)A . - (C) R21 (y2 (t) - ^()(t.T)) (6.8b)

These sources require the knowledge of X (1) (tIT) as well as of

( (tIT). This is not very convenient, and consequently we will
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and where PS' PF and PB are given by (4.12)-(4.14) with the special

matrix structure (6.4)-(6.5). Since equations (6.10)-(6.11) depend

only on the local estimates (tIT) and on the new measurements

Y2 ( *) , we can use them to compute the centralized smoothed estimate

x(1 ) (tJT) Ft Bt

1F
x~tIT F B s (6.12)

o x(t)T + (t)-+

To show that we can always transform the problem so that

B2 1BI0, we consider the process

1 u(6.13)

\w2 (t)l B21)u

By projecting w2 (t) on w1 (t), one gets

2(t) = E[w 2(t)Iw (t)] + 2(t)

(6.14)
- T lw (t) + 2(t)

so that

0 - EIw (t)w (t)] - w2(t)w!(t)J - T1 E[w1 (t)wi(t)]

M B 21 BI -T 1 B 1 . (6.15)

Then, if we consider the similarity transform(:D-C: X 0DC:)
x 0 

(6.16)
S1  -T1  I / s

T
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n (t) -11 n t&

.(t -tA

T6R(1t)l))

Figure 6.2. Scattering layers obtained by superposi.tion.
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the systm (6.4)-(6.5) becomes

-+A TA +AT A001(X

1T 121- 11 22 1 2 2 ) 1

Yl + v (6.17a)

- *-

C1 1

Y2 = (C2 1 +C2 2 T1 C2 2  + v 2  (6.17b)

C2

where we have 21 (21-T T B )BI'=, so that we can apply the

formula (6.9)-6.11) to this system.

Some similar results can be obtained for the filtering estimates.

The problem that we shall study is one where the processor S can com-

municate with S2  and where the model available to S2 is the global model,

whereas the model available to S1 is of smaller size. In this case, the
A1

estimate x 1 (t) (based on the observations y1 (.)) is received by the

processor S2 which then wants to combine this estimate with the

observations y2 (-) in order to obtain x(t). This estimation structure is

not symmetric, but in this case the decentralized filter has a simple form

which would otherwise be hidden by several changes of basis for the

global state-space.
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In the following, we will denote respectively by P(t) and P 1 ) (t)
1

the solutions of the Riccati equations (4.15) and

(1) (1) 1+ i)A l + BB - P (6.18)1i 1 l1 i 1 I1 1 1 1 11 1 '

where in (4.15) we assume that A,B,C 1 and C2  have the block structure

(6.4)-(6.5). The initial conditions for these equations are such that

if ( 11 P12\
P P21 P22) (6.19)

we have P (0) = P (0). Then if we denote by
11 1

d(t) == -(t)x(t) = Pl(t () (6.20)

the information filter form of the centralized filtering estimate, the

global transmission layers associated to d(t) are described in
ifd(i) (1)-I 'il)

Figure 6.3a. Similarly, if d ()t) = p 1  (t)x (t), the local
1 1 1

transmission layers associated to d(t) are given by Figure 6.3b.

Since d(1 )(t) is of smaller size than d(t), we cannot apply directly
1

the principle of superposition to the global and local layers. However,

as for the smoothing problem, we can imbed the local transmission layers

inside the global ones as shown in Figure 6.3c. The vector (d (t),0),I

of transmitted variables has now the same size as d(t). Then, by

-".. . 1 -
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and where P5 Sp and P Bare given by (4.12)-(4.14) with the special

matrix structure (6.4)-(6.5). Since equations (6.10)-(6.1l) depend
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-T lw (t) + ;i 2tM

so that
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Then, if we consider the similarity transform

x 0 ( xl)(6.16)
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Figure 6.3. (a) Global transmission layers, (b) Local transmission layers,
(c) Imbedding of the local layers.
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superposing the transmission layers of Figures 6.3a and 6.3c, we find

in Figure 6.4 that

d W(t) (

1(t) = d(t) - = P1  )- (6.21)

satisfies a transmission problem with the same mediu~m as for the

global filtering problem and with sources

iw - Bjd l(t)A+CR y (6.22)
(T 1+ 1y2A

(note that B 12B = T 1B IBj). Thus, Wt is given by

1(t) = -(A'+P -1BB')l(t) + CR ?2y2(t) (6.23)

with initial conditions

1(O) (0)l ~ 1 (6.24)

If instead of computing 1(t) we want to compute

r(t) -P(t) 1(t) xc(t) - P ( ) x~j I tW (6.25)

A0
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-".. . 1 -
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superposing the transmission layers of Figures 6.3a and 6.3c, we find

in Figure 6.4 that

d (t) P x1 (

1(t) = d(t) - = (P1 - (6.21)

satisfies a transmission problem with the same medim as for the
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without revealing their position. These units tend consequently to

couuunicate as rarely as possible. In addition, some delays are incurred

when transmitted signals need to he relayed through several ccumunication

nodes before reaching a processing center. Some noise appears also in
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without revealing their position. These units tend consequently to

couuunicate as rarely as possible. In addition, some delays are incurred

when transmitted signals need to be relayed through several ccumunication

nodes before reaching a processing center. Some noise appears also in

ccunications when the environment interacts with the transmitted infor-

mation through distortions, background noise, multipath effects,

jamnming, etc..

The extension of the results of the previous sections to take into

account the existence of delays and of noise in the communication channels

is presently under consideration.

We note also that in this paper, no special assumption has been made

on the structure of the dynamical systems considered. When there exists

a natural separation of the local systems Si arising either from a weak

coupling of these systems, or from a separation between fast and slow time

scales, we can use the scattering framework to obtain some decentralized

estimation algorithms which exploit this structure, as will be shown in a

subsequent paper.
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